Polyclonal Antibody to GAPDH

Product code: 11-13024

Clonality : Polyclonal
Application : WB
Reactivity : Rat, Mouse, Human

Shipping Info:

Order now and get it on Friday December 27, 2024

Write a review for this product on BioCompare
Get $20 gift card from Amazon
Size
Price

Available Pack Size(s)

  •   25 µg

  •  100 µg

  • $100.00 

  • $270.00 

Add to Wish List

Shipping Info:

Order now and get it on Friday December 27, 2024

Same day delivery FREE on San Diego area orders placed by 1.00 PM


Format : Purified
Amount : 100 µg
Isotype : Rabbit IgG
Purification : Protein A Chromatography
Content : 25 µg in 50 µl/100 µg in 200 µl PBS containing 0.05% BSA and 0.05% sodium azide. Sodium azide is highly toxic.
Storage condition : Store the antibody at 4°C, stable for 6 months. For long-term storage, store at -20°C. Avoid repeated freeze and thaw cycles.
Gene : GAPDH
Gene ID : 2597
Uniprot ID : P04406
Alternative Name : GAPDH, GAPD, CDABP0047, OK/SW-cl.12
Immunogen Information : A partial length recombinant GAPDH protein was used as the immunogen for this antibody.

GAPDH (Glyceraldehyde-3-Phosphate Dehydrogenase) is an enzyme best known for its role in glycolysis. However, extra-glycolytic functions of GAPDH have been described, including regulation of protein expression via RNA binding. GAPDH binds to numerous AREs (adenine-uridine rich elements) from various mRNA 3'-untranslated regions in vitro and in vivo despite its lack of a canonical RNA binding motif. GAPDH specifically catalyzes the simultaneous phosphorylation and oxidation of glyceraldehyde 3-phosphate using NAD+ (Nicotinamide Adenine Dinucleotide) as a cofactor to produce glycerate 1,3-biphosphate and NADH. In addition to its role in energy production, GAPDH has been implicated in many cellular processes including DNA repair tRNA export, membrane fusion and transport, endocytosis and nuclear membrane assembly, and cell death.

Western blot analysis: 1-2 µg/ml

For Research Use Only. Not for use in diagnostic/therapeutics procedures.

Subcellular location: Cytoplasm, Nucleus, Cytoplasm, Membrane, Cytoplasm
Post transnational modification: Oxidative stress can promote the formation of high molecular weight disulfide-linked GAPDH aggregates, through a process called nucleocytoplasmic coagulation. Such aggregates can be observed in vivo in the affected tissues of patients with Alzheimer disease or alcoholic liver cirrhosis, or in cell cultures during necrosis. Oxidation at Met-46 may play a pivotal role in the formation of these insoluble structures. This modification has been detected in vitro following treatment with free radical donor (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide. It has been proposed to destabilize nearby residues, increasing the likelihood of secondary oxidative damages, including oxidation of Tyr-45 and Met-105. This cascade of oxidations may augment GAPDH misfolding, leading to intermolecular disulfide cross-linking and aggregation.
BioGrid: 108868. 233 interactions.
There are currently no product reviews

Customers who purchased this product also purchased

Most viewed Products