Mouse EphA4 / HEK8 Recombinant Protein (Fc Tag)(Discontinued)
Shipping Info:
For estimated delivery dates, please contact us at [email protected]
Amount : | 200 µg |
Purification : | > 95 % as determined by SDS-PAGE |
Content : | Formulation Lyophilized from sterile PBS, pH 7.4 Normally 5 % - 8 % trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. |
Storage condition : | Store it under sterile conditions at -20°C to -80°C. It is recommended that the protein be aliquoted for optimal storage. Avoid repeated freeze-thaw cycles. |
AA sequence : | Met1-Thr547 |
Alternative Name : | 2900005C20Rik Protein, Mouse; AI385584 Protein, Mouse; Cek8 Protein, Mouse; Hek8 Protein, Mouse; rb Protein, Mouse; Sek Protein, Mouse; Sek1 Protein, Mouse; Tyro1 Protein, Mouse |
Source : HEK293 Cells
EPH receptor A4 (ephrin type-A receptor 4), also known as EphA4, belongs to the ephrin receptor subfamily of the protein-tyrosine kinase family which 16 known receptors (14 found in mammals) are involved: EPHA1, EPHA2, EPHA3, EPHA4, EPHA5, EPHA6, EPHA7, EPHA8, EPHA9, EPHA1, EPHB1, EPHB2, EPHB3, EPHB4, EPHB5, EPHB6. The Eph family of receptor tyrosine kinases (comprising EphA and EphB receptors) has been implicated in synapse formation and the regulation of synaptic function and plasticity6. EphA4 is enriched on dendritic spines of pyramidal neurons in the adult mouse hippocampus, and ephrin-A3 is localized on astrocytic processes that envelop spines. Eph receptor-mediated signaling, which is triggered by ephrins7, probably modifies the properties of synapses during synaptic activation and remodeling. Ephrin receptors are components of cell signalling pathways involved in animal growth and development, forming the largest sub-family of receptor tyrosine kinases (RTKs). The extracellular domain of an EphA4 interacts with ephrin ligands, which may be tethered to neighbouring cells. Ligand-mediated activation of Ephs induce various important downstream effects and Eph receptors have been studied for their potential roles in the development of cancer.
EPH receptor A4 (ephrin type-A receptor 4), also known as EphA4, belongs to the ephrin receptor subfamily of the protein-tyrosine kinase family which 16 known receptors (14 found in mammals) are involved: EPHA1, EPHA2, EPHA3, EPHA4, EPHA5, EPHA6, EPHA7, EPHA8, EPHA9, EPHA1, EPHB1, EPHB2, EPHB3, EPHB4, EPHB5, EPHB6. The Eph family of receptor tyrosine kinases (comprising EphA and EphB receptors) has been implicated in synapse formation and the regulation of synaptic function and plasticity6. EphA4 is enriched on dendritic spines of pyramidal neurons in the adult mouse hippocampus, and ephrin-A3 is localized on astrocytic processes that envelop spines. Eph receptor-mediated signaling, which is triggered by ephrins7, probably modifies the properties of synapses during synaptic activation and remodeling. Ephrin receptors are components of cell signalling pathways involved in animal growth and development, forming the largest sub-family of receptor tyrosine kinases (RTKs). The extracellular domain of an EphA4 interacts with ephrin ligands, which may be tethered to neighbouring cells. Ligand-mediated activation of Ephs induce various important downstream effects and Eph receptors have been studied for their potential roles in the development of cancer.
Measured by its binding ability in a functional ELISA . Immobilized mouse EPHA5 at 2 µg/ml (100 µL/well) can bind mouse EFNA4-Fc with a linear ranger of 1.28-32 ng/ml.
Endotoxin :< 1.0 EU per µg of the protein as determined by the LAL method
For Research Use Only. Not for use in diagnostic/therapeutics procedures.
There are currently no product reviews
|