30-2682: Mouse IgG1 Isotype Control DyLight 488 (Clone : MOPC-21)

Clonality: Monoclonal
Clone Name: MOPC-21
Application: $\mathrm{FACS}, \mathrm{IHC}(\mathrm{P}), \mathrm{IHC}(\mathrm{F}), \mathrm{ICC}, \mathrm{WB}$
Conjugate: DyLightÂ® 488
Isotype: Mouse IgG1 kappa

Description

Specificity : This mouse IgG1 kappa monoclonal antibody (clone MOPC-21) with unknown Specificity has been confirmed as a good negative control with human and rat species, based on multiple testing on rat and human tissues.

Product Info

Amount:

Purification :

Content:

Storage condition :

0.1 mg

The purified antibody is conjugated with tandem dye DyLight ${ }^{\AA \oplus} 488$ under optimum conditions. The conjugate is purified by size-exclusion chromatography.
$0.1 \mathrm{mg} / \mathrm{ml}$
Formulation : Stabilizing phosphate buffered saline (PBS) solution containing 15 mM sodium azide
Store in the dark at $2-8^{\circ} \mathrm{C}$. Do not freeze. Avoid prolonged exposure to light.

Application Note

Negative control: The reagent is intended as an isotype control to establish the amount of non-specific antibody binding. For your particular experiment, use the same concentration of this control antibody as the recommended working concentration of the antigen-specific antibody. Also, when working with prediluted antibodies, dilute the isotype control to the same concentration as is the concentration of the antigen-specific antibody in the prediluted antibody solution you are using. If under particular experimental conditions the background signal of the isotype control is too high (usually when working concentrations of used antibodies are above $10 \tilde{A} \square A ̂ \mu \mathrm{~g} / \mathrm{ml}$ of incubation mixture), change the conditions of your experiment to reduce the background.

Figure 1 : Flow cytometry surface nonspecific staining pattern of human peripheral whole blood stained using mouse IgG1 Isotype control (MOPC-21) DyLight $\circledR^{8} 488$ antibody (concentration in sample $9 \mu \mathrm{~g} / \mathrm{ml}$).

