32-6824: KMT5A Human

Alternative Name : KMT5A, PR-Set7, SET07, SET8, SETD8, H4-K20-HMTase KMT5A.

Description

Source: Sf9, Baculovirus cells.
Sterile Filtered colorless solution.
Lysine Methyltransferase 5A (KMT5A) is an enzyme which catalyzes both histones and non-histone proteins. KMT5A contributes to the maintenance of proper higher-order structure of DNA during mitosis. KMT5A takes part in cell-cycledependent transcriptional silencing and mitotic regulation in metazoans. KMT5A plays a role as a barrier to prevent cellular senescence through chromatinmediated regulation of senescence-associated metabolic remodeling. KMT5A mediates monomethylation of p53/TP53 at 'Lys-382', which leads to repress p53/TP53-target genes. The loss of KMT5A simultaneously stimulate nucleolar function and retinoblastoma protein-mediated mitochondrial metabolism.
KMT5A produced in Sf9 Baculovirus cells is a single, glycosylated polypeptide chain containing 165 amino acids (195-352 a.a.) and having a molecular mass of 18.9 kDa (Migrates at $18-28 \mathrm{kDa}$ on SDS-PAGE under reducing conditions).KMT5A is expressed with a 7 amino acid His tag at C-Terminus and purified by proprietary chromatographic techniques.

Product Info

Amount :

Purification :

Content :

Storage condition :

Amino Acid :
$2 \mu \mathrm{~g} / 10 \mu \mathrm{~g}$
Greater than 85.0% as determined by SDS-PAGE.
KMT5A protein solution $(0.25 \mathrm{mg} / \mathrm{ml})$ contains 20 mM Tris- HCl buffer (pH 8.0), 5 mM DTT, 0.2 M $\mathrm{NaCl}, 1 \mathrm{mM}$ EDTA and 50% glycerol.
Store at $4^{\circ} \mathrm{C}$ if entire vial will be used within 2-4 weeks. Store, frozen at $-20^{\circ} \mathrm{C}$ for longer periods of time. For long term storage it is recommended to add a carrier protein ($0.1 \% \mathrm{HSA}$ or BSA). Avoid multiple freeze-thaw cycles.
MKAELQSEER KRIDELIESG KEEGMKIDLI DGKGRGVIAT KQFSRGDFVV EYHGDLIEIT DAKKREALYA QDPSTGCYMY YFQYLSKTYC VDATRETNRL GRLINHSKCG NCQTKLHDID GVPHLILIAS RDIAAGEELL YDYGDRSKAS IEAHPWLKHH HHHHH.

