

9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982

Email: info@abeomics.com

32-20086: Recombinant Human FGF-acidic(Discontinued)

Reactivity: cow, hagfish, hamster, Human, mouse, pig, rat

Alternative Name: Fibroblast Growth Factor-acidic, FGF-1, HBGF-1, ECGF-beta

Description

Source:E.coliFGF-acidic is one of 23 known members of the FGF family. Proteins of this family play a central role during prenatal development, postnatal growth and regeneration of a variety of tissues, by promoting cellular proliferation and differentiation. FGF-acidic is a non-glycosylated heparin binding growth factor that is expressed in the brain, kidney, retina, smooth muscle cells, bone matrix, osteoblasts, astrocytes and endothelial cells. FGF-acidic has the ability to signal through all the FGF receptors. Recombinant Human FGF-acidic is a 16.8 kDa protein consisting of 141 amino acid residues.

Product Info

Amount: 10 μg / 50 μg

Purification : Purity: >= 95% by SDS-PAGE gel and HPLC analyses. **Content :** This recombinant protein is supplied in lyophilized form.

Amino Acid: MFNLPPGNYK KPKLLYCSNG GHFLRILPDG TVDGTRDRSD QHIQLQLSAE SVGEVYIKST ETGQYLAMDT

DGLLYGSQTP NEECLFLERL EENHYNTYIS KKHAEKNWFV GLKKNGSCKR GPRTHYGQKA ILFLPLPVSS D

Application Note

Determined by a cell proliferation assay using Balb/c 3T3 cells. The expected $\tilde{A} \Box \hat{A} \equiv \tilde{A} \Box \hat{A}$ is <= 0.5 ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box \hat{A} \Box \hat{A} = 0.5$ ng/ml in the presence of $10 \ \tilde{A} \Box \hat{A} \Box$