32-8215: Recombinant Human Chloride Intracellular Channel Protein 1/CLIC1 (N-6His)

Gene:
 CLIC1

Gene ID: 1192
Uniprot ID: 000299

Description

Source: E. coli.
MW :29kD.
Recombinant Human CLIC1 is produced by our E.coli expression system and the target gene encoding Met1-Lys241 is expressed with a 6 His tag at the N-terminus. Chloride Intracellular Channel Protein 1 (CLIC1) belongs to the Chloride Channel CLIC family and contains one GST C-terminal domain. CLIC1 can be expressed in various cell types, but it is especially prominent in the heart, placenta, liver, kidney, and pancreas. CLIC1 can insert into membranes and form chloride ion channels. The channel activity depends on the pH . CLIC1 membrane insertion seems to be redox-regulated and may occur only under oxydizing conditions. CLIC1 is also involved in the regulation of the cell cycle.

Product Info

Amount :

Content :

Storage condition :

Amino Acid :

$10 \mu \mathrm{~g} / 50 \mu \mathrm{~g}$

Lyophilized from a $0.2 \mu \mathrm{~m}$ filtered solution of 20 mM Tris, $150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 8.0$.
Lyophilized protein should be stored at $-20^{\circ} \mathrm{C}$, though stable at room temperature for 3 weeks. Reconstituted protein solution can be stored at $4-7^{\circ} \mathrm{C}$ for $2-7$ days. Aliquots of reconstituted samples are stable at $-20^{\circ} \mathrm{C}$ for 3 months.
MGSSHHHHHHSSGLVPRGSHMAEEQPQVELFVKAGSDGAKIGNCPFSQRLFMVLWLKGVTFNVTTVDTKRR TETVQKLCPGGQLPFLLYGTEVHTDTNKIEEFLEAVLCPPRYYPKLAALNPESNTAGLDIFAKFSAYIKNSNPALND NLEKGLLKALKVLDNYLTSPLPEEVDETSAEDEGVSQRKFLDGNELTLADCNLLPKLHIVQVVCKKYRGFTIPEAF RGVHRYLSNAYAREEFASTCPDDEEIELAYEQVAKALK

Application Note

Always centrifuge tubes before opening. Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than $100 \tilde{A} \square A ̂ \mu \mathrm{~g} / \mathrm{ml}$. Dissolve the lyophilized protein in ddH2O. Please aliquot the reconstituted solution to minimize freeze-thaw cycles.
Endotoxin : Less than 0.1 ng/Ã $\square A ̂ \mu \mathrm{~g}(1 \mathrm{IEU} / \hat{A} \square A ̂ \mu \mathrm{~g})$ as determined by LAL test.

