32-3724: EGLN3 Recombinant Protein

Alternative Name :

Egl nine homolog 3 (C. elegans),Hypoxia-inducible factor prolyl hydroxylase 3,Prolyl hydroxylase domain-containing protein 3,HIF-PH3,PHD3,egl nine-like protein 3 isoform,HIF prolyl hydroxylase 3,EC 1.14.11.29,HPH-1,HPH-3.

Description

Source : E.coli. EGLN3 Human Recombinant produced in E. coli is a single polypeptide chain containing 263 amino acids (1-239) and having a molecular mass of 29.8 kDa .EGLN3 is fused to a 24 amino acid His-tag at N-terminus \& purified by proprietary chromatographic techniques. Egl Nine Homolog 3 (EGLN3) belongs to the EGLN family of prolyl hydroxylases. EGLN3 catalyzes hydroxylation of the subunit of hypoxia-inducible factor-, which targets hypoxia-inducible factor- for ubiquitination by a ubiquitin ligase complex containing the von Hippel-Lindau (VHL) tumor suppressor. EGLN3 is the most significant isozyme in limiting physiological activation of HIFs (especially HIF2A) in hypoxia. EGLN3 is activated in cardiovascular cells and Hela cells after exposure to hypoxia. In addition, EGLN3 hydroxylates PKM2 in hypoxia, thus limiting glycolysis. Under normoxia, EGLN3 hydroxylates and regulates the stability of ADRB2. EGLN3 is inhibited by polynitrogen compounds possibly by chelation to $\mathrm{Fe} 2+$ ions.

Product Info

Amount :	$10 \mu \mathrm{~g}$
Purification :	Greater than 90% as determined by SDS-PAGE.
Content :	The EGLN3 solution ($0.25 \mathrm{mg} / 1 \mathrm{ml}$) contains 20 mM Tris-HCl buffer (pH 8.0), $300 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM}$ DTT, 2 mM EDTA and 50% glycerol.
Storage condition :	Store at $4^{\circ} \mathrm{C}$ if entire vial will be used within $2-4$ weeks. Store, frozen at $-20^{\circ} \mathrm{C}$ for longer periods of time. For long term storage it is recommended to add a carrier protein (0.1% HSA or BSA). Avoid multiple freeze-thaw cycles.
Amino Acid :	MGSSHHHHHH SSGLVPRGSH MGSHMPLGHI MRLDLEKIAL EYIVPCLHEV GFCYLDNFLG EVVGDCVLER VKQLHCTGAL RDGQLAGPRA GVSKRHLRGD QITWIGGNEE GCEAISFLLS LIDRLVLYCG SRLGKYYVKE RSKAMVACYP GNGTGYVRHV DNPNGDGRCI TCIYYLNKNW DAKLHGGILR IFPEGKSFIA DVEPIFDRLL fFWSDRRNPH EVQPSYATRY AMTVWYFDAE ERAEAKKKFR NLTRKTESAL TED

